
Reboot Log
Local application BOOT

Robert Goodwin
Thu, Sep 11, 2008

To build a record of front ends that boot, local application BOOT captures the “comment” alarm 
message that each node multicasts as it comes up after reset. This note describes how this is done.

Each front end system listens to all Classic protocol messages, including alarm messages. Classic 
alarm messages are normally multicast to a target node# in the range 09F0–09FE. The one to use is 
installed in the 4th word of the PAGEM system table in each node. One could write code that listens 
to the Classic protocol port in an arbitrary client, but a front end system code already listens to this 
port; hence, the same datagrams are not accessible to a local application.

What does the system code do with alarm messages that it receives? Support is included for 
optionally emitting alarm messages via the serial port and/or the bottom line of the “little 
console,” according to the setting of universal Bits 00A4, 00A3, and 00A2. The implementation is 
built on an alarm message block that the Alarms task normally allocates when it prepares an alarm 
message for delivery to the network. After delivery, the block is freed by the FREEBLK code in the 
QMonitor task. For alarm messages (sent via multicast) that are received by a node, the message is 
placed in a message block which is placed into the same queue that is used for delivery of alarm 
messages to the network. But it is marked so that the code that builds datagrams will ignore it. 
(This queue is referred to in the source code as OUTPQ, or ETHPQ.) Whether sent to the network or 
not, all message block entries in this queue are reviewed by QMonitor. 

At the point in FREEBLK where the message block is no longer needed, the above Bits are checked 
to see whether an ascii message is to be constructed for serial port delivery. In addition, for local 
alarms only, the relevant information is extracted from the message block and passed via an 
internal message queue to the local application AERS, whose job is to shepherd alarm delivery to 
the Acnet alarm handler AEOLUS. The new support needed for BOOT is modeled after this AERS 
support. For any system reset comment alarm message, whether for the local node or not, the same 
information is extracted and passed to another message queue monitored by BOOT.

An entry found in the message queue by BOOT is merely formatted into an 8-byte record to write to 
the BOOTLOG data stream, for which the node and data stream index are given by parameters to 
BOOT. Upon initialization, BOOT ensures that the target data stream is named BOOTLOG. Note that 
the BOOTLOG data stream does not have to reside locally.

Each front end can listen to only 8 multicast addresses, so one front end running BOOT is not 
enough to see all alarm messages that are divided across as many as 15 multicast addresses. Three 
instances of BOOT will be needed, each one in a separate node that is configured to listen to several 
multicast addresses. But each instance can target the same BOOTLOG data stream, so that listing the 
contents of BOOTLOG can be all-inclusive.

The initial implementation of BOOT is installed in node0509, which listens only to the multicast 
address for node 09F1, which is used by all Linac front ends. When a Linac front end comes up 
after reboot, node0509 sees it, passes it to BOOT, which then targets BOOTLOG in node0562.

After testing, BOOT was installed in nodes 0508, 0509, and 0562. Each node listens to alarm 
messages sent to 5 different multicast addresses, so that the maximum of 15 are monitored. Each 
node writes a record about a node’s booting in the BOOTLOG data stream in node0562.


